77,749 research outputs found

    Effects of Confinement on Critical Adsorption: Absence of Critical Depletion for Fluids in Slit Pores

    Full text link
    The adsorption of a near-critical fluid confined in a slit pore is investigated by means of density functional theory and by Monte Carlo simulation for a Lennard-Jones fluid. Our work was stimulated by recent experiments for SF_6 adsorbed in a mesoporous glass which showed the striking phenomenon of critical depletion, i.e. the adsorption excess "Gamma" first increases but then decreases very rapidly to negative values as the bulk critical temperature T_c is approached from above along near-critical isochores. By contrast, our density functional and simulation results, for a range of strongly attractive wall-fluid potentials, show Gamma monotonically increasing and eventually saturating as the temperature is lowered towards T_c along both the critical (rho=rho_c) and sub-critical isochores (rho<\rho_c). Such behaviour results from the increasingly slow decay of the density profile away from the walls, into the middle of the slit, as T->T_c. For rho < rho_c we find that in the fluid the effective bulk field, which is negative and which favours desorption, is insufficient to dominate the effects of the surface fields which favour adsorption. We compare this situation with earlier results for the lattice gas model with a constant (negative) bulk field where critical depletion was found. Qualitatively different behaviour of the density profiles and adsorption is found in simulations for intermediate and weakly attractive wall-fluid potentials but in no case do we observe the critical depletion found in experiments. We conclude that the latter cannot be accounted for by a single pore model.Comment: 21 pages Revtex. Submitted to Phys. Rev.

    Is the Water Sector Lagging behind Education and Health on Aid Effectiveness? Lessons from Bangladesh, Ethiopia and Uganda

    Get PDF
    A study in three countries (Bangladesh, Ethiopia and Uganda) assessed progress against the Paris Principles for Aid Effectiveness (AE) in three sectors – water, health and education – to test the assumption that the water sector is lagging behind. The findings show that it is too simplistic to say that the water sector is lagging, although this may well be the case in some countries. The study found that wider governance issues are more important for AE than having in place sector-specific mechanics such as Sector-Wide Approaches alone. National political leadership and governance are central drivers of sector AE, while national financial and procurement systems and the behaviour of actors who have not signed up to the Paris Principles – at both national and global levels – have implications for progress that cut across sectors. Sectors and sub-sectors do nonetheless have distinct features that must be considered in attempting to improve sector-level AE. In light of these findings, using political economy approaches to better understand and address governance and strengthening sector-level monitoring is recommended as part of efforts to improve AE and development results in the water sector

    Public Funding for Sanitation - The Many Faces of Sanitation Subsidies

    Get PDF

    Subsynchronous vibrations in a high pressure centrifugal compressor: A case history

    Get PDF
    Two distinct aerodynamically excited vibrations in a high pressure low flow centrifugal compressor are documented. A measured vibration near 21% of running speed was identified as a nonresonant forced vibration which results from rotating stall in the diffuser; a measured vibration near 50% of running speed was identified as a self excited vibration sustained by cross coupling forces acting at the compressor wheels. The dependence of these characteristics on speed, discharge pressure, and changes in bearing design are shown. The exciting mechanisms of diffuser stall and aerodynamic cross coupling are evidenced. It is shown how the rotor characteristics are expected to change as a result of modifications. The operation of the compressor after the modifications is described

    Effects of weak surface fields on the density profiles and adsorption of a confined fluid near bulk criticality

    Full text link
    The density profile and Gibbs adsorption of a near-critical fluid confined between two identical planar walls is studied by means of Monte Carlo simulation and by density functional theory for a Lennard-Jones fluid. By reducing the strength of wall-fluid interactions relative to fluid-fluid interactions we observe a crossover from behaviour characteristic of the normal surface universality class, strong critical adsorption, to behaviour characteristic of a 'neutral' wall. The crossover is reminiscent of that which occurs near the ordinary surface transition in Ising films subject to vanishing surface fields. For the 'neutral' wall the density profile, away from the walls, is almost constant throughout the slit capillary and gives rise to an adsorption that is constant along the critical isochore. The same 'neutral' wall yields a line of capillary coexistence that is almost identical to the bulk coexistence line. In the crossover regime we observe features in the density profile similar to those found in the magnetisation profile of the critical Ising film subject to weak surface fields, namely two smooth maxima, located away from the walls, which merge into a single maximum at midpoint as the strength of the wall-fluid interaction is reduced or as the distance between walls is decreased. We discuss similarities and differences between the surface critical behaviour of fluids and of Ising magnets.Comment: 34 pages, 10 figures, submitted to the Journ. Chem. Phy

    Stability of some epoxy-encapsulated diode thermometers

    Get PDF
    The stability upon thermal cycling and handling of ten small, epoxy-encapsulated silicon diode thermometers at six temperatures in the range from liquid nitrogen temperatures to about 60 C. The nominal temperatures of measurement were -196, -78, 0, 20, 40, and 60 C, as measured on the International Practical Temperature Scale of 1968. Diodes were to be thermally cycled 15 to 20 times. Since NASA anticipates that the uncertainty in their temperature measurements will be + or - 50 mK, uncertainties as large as + or - 10 mK in the measurements of the evaluaton can be accommodated without deleteriously affecting the value of the results of the investigation

    Adaptive high-order finite element solution of transient elastohydrodynamic lubrication problems

    Get PDF
    This article presents a new numerical method to solve transient line contact elastohydrodynamic lubrication (EHL) problems. A high-order discontinuous Galerkin (DG) finite element method is used for the spatial discretization, and the standard Crank-Nicolson method is employed to approximate the time derivative. An h-adaptivity method is used for grid adaptation with the time-stepping, and the penalty method is employed to handle the cavitation condition. The roughness model employed here is a simple indentation, which is located on the upper surface. Numerical results are presented comparing the DG method to standard finite difference (FD) techniques. It is shown that micro-EHL features are captured with far fewer degrees of freedom than when using low-order FD methods

    A variable rate speech compressor for mobile applications

    Get PDF
    One of the most promising speech coder at the bit rate of 9.6 to 4.8 kbits/s is CELP. Code Excited Linear Prediction (CELP) has been dominating 9.6 to 4.8 kbits/s region during the past 3 to 4 years. Its set back however, is its expensive implementation. As an alternative to CELP, the Base-Band CELP (CELP-BB) was developed which produced good quality speech comparable to CELP and a single chip implementable complexity as reported previously. Its robustness was also improved to tolerate errors up to 1.0 pct. and maintain intelligibility up to 5.0 pct. and more. Although, CELP-BB produces good quality speech at around 4.8 kbits/s, it has a fundamental problem when updating the pitch filter memory. A sub-optimal solution is proposed for this problem. Below 4.8 kbits/s, however, CELP-BB suffers from noticeable quantization noise as a result of the large vector dimensions used. Efficient representation of speech below 4.8 kbits/s is reported by introducing Sinusoidal Transform Coding (STC) to represent the LPC excitation which is called Sine Wave Excited LPC (SWELP). In this case, natural sounding good quality synthetic speech is obtained at around 2.4 kbits/s
    • …
    corecore